{ "id": "1707.02598", "version": "v1", "published": "2017-07-09T16:14:14.000Z", "updated": "2017-07-09T16:14:14.000Z", "title": "Quitting Games and Linear Complementarity Problems", "authors": [ "Eilon Solan", "Omri N. Solan" ], "categories": [ "math.OC" ], "abstract": "We prove that every multiplayer quitting game admits a sunspot $\\varepsilon$-equilibrium for every $\\varepsilon > 0$, that is, an $\\varepsilon$-equilibrium in an extended game in which the players observe a public signal at every stage. We also prove that if a certain matrix that is derived from the payoffs in the game is a $Q$-matrix in the sense of linear complementarity problems, then the game admits a Nash $\\varepsilon$-equilibrium for every $\\varepsilon > 0$.", "revisions": [ { "version": "v1", "updated": "2017-07-09T16:14:14.000Z" } ], "analyses": { "subjects": [ "91A15", "90C33" ], "keywords": [ "linear complementarity problems", "multiplayer quitting game admits", "equilibrium", "public signal", "extended game" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }