{ "id": "1707.02592", "version": "v1", "published": "2017-07-09T15:15:03.000Z", "updated": "2017-07-09T15:15:03.000Z", "title": "The Submodule Structure of Spherical Principal Series Module of Reductive Groups with Frobenius Maps in Cross Characteristic", "authors": [ "Xiaoyu Chen" ], "comment": "7 pages", "categories": [ "math.RT" ], "abstract": "Let ${\\bf G}$ be a connected reductive group over $\\bar{\\mathbb{F}}_q$, the algebraically closure of $\\mathbb{F}_q$ (the finite field with $q=p^e$ elements), with the standard Frobenius map $F$. Let ${\\bf B}$ be an $F$-stable Borel subgroup. Let $\\Bbbk$ be a field of characteristic $r\\neq p$. In this paper, we completely determine the composition factors of the induced module $\\op{Ind}_{\\bf B}^{\\bf G}\\op{tr}=\\Bbbk{\\bf G}\\otimes_{\\Bbbk{\\bf B}}\\op{tr}$ (here $\\Bbbk{\\bf H}$ is the group algebra of the group ${\\bf H}$, and $\\op{tr}$ is the trivial ${\\bf B}$-module). In particular, we find a new family of infinite dimensional irreducible abstract representations of ${\\bf G}$.", "revisions": [ { "version": "v1", "updated": "2017-07-09T15:15:03.000Z" } ], "analyses": { "subjects": [ "20G05" ], "keywords": [ "spherical principal series module", "frobenius map", "reductive group", "submodule structure", "cross characteristic" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }