{ "id": "1707.02565", "version": "v1", "published": "2017-07-09T11:49:15.000Z", "updated": "2017-07-09T11:49:15.000Z", "title": "Gelfand-Kirillov Dimensions of Highest Weight Harish-Chandra Modules for $SU(p,q)$", "authors": [ "Zhanqiang Bai", "Xun Xie" ], "comment": "19 pages. Comments are welcome", "categories": [ "math.RT", "math.CO" ], "abstract": "Let $ (G,K) $ be an irreducible Hermitian symmetric pair of non-compact type with $G=SU(p,q)$, and let $ \\lambda $ be an integral weight such that the simple highest weight module $ L(\\lambda) $ is a Harish-Chandra $ (\\mathfrak{g},K) $-module. We give a combinatoric algorithm for the Gelfand-Kirillov dimension of $ L(\\lambda) $. This enables us to prove that the Gelfand-Kirillov dimension of $ L(\\lambda) $ decreases as the integer $ \\langle\\lambda+\\rho,\\beta^\\vee\\rangle $ increases, where $\\rho$ is the half sum of positive roots and $\\beta$ is the maximal noncompact root. As a byproduct, we obtain a description on the associated variety of $ L(\\lambda) $.", "revisions": [ { "version": "v1", "updated": "2017-07-09T11:49:15.000Z" } ], "analyses": { "subjects": [ "22E47", "17B10" ], "keywords": [ "highest weight harish-chandra modules", "gelfand-kirillov dimension", "simple highest weight module", "maximal noncompact root", "irreducible hermitian symmetric pair" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }