{ "id": "1707.02384", "version": "v1", "published": "2017-07-08T03:06:21.000Z", "updated": "2017-07-08T03:06:21.000Z", "title": "Disjoint cycles on Lichiardopol's conjecture in tournaments", "authors": [ "Fuhong Ma", "Jin Yan" ], "categories": [ "math.CO" ], "abstract": "In this paper, we give an almost solution to the conjecture by N. Lichiardopol [Discrete Math. 310 (19) (2010) 2567-2570]. It is proved that for given integers $q \\geq 11$ and $k \\geq 1$, any tournament with minimum out-degree at least $(q-1)k-1$ contains at least $k$ disjoint cycles of length $q$. Our result is also an affirmative answer in terms of tournaments to the conjecture of C. Thomassen [Combinatorca. 3 (3-4) (1983) 393-396]. In addition, it is an extension of a result by J. Bang-Jensen, S. Bessy and S. Thomasse [J.Graph Theory 75 (3) (2014) 284-302].", "revisions": [ { "version": "v1", "updated": "2017-07-08T03:06:21.000Z" } ], "analyses": { "keywords": [ "disjoint cycles", "lichiardopols conjecture", "tournament", "minimum out-degree", "graph theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }