{ "id": "1707.01566", "version": "v1", "published": "2017-07-05T20:10:21.000Z", "updated": "2017-07-05T20:10:21.000Z", "title": "Numerical Methods for Fractional Diffusion", "authors": [ "Andrea Bonito", "Juan Pablo Borthagaray", "Ricardo H. Nochetto", "Enrique Otarola", "Abner J. Salgado" ], "categories": [ "math.NA" ], "abstract": "We present three schemes for the numerical approximation of fractional diffusion, which build on different definitions of such a non-local process. The first method is a PDE approach that applies to the spectral definition and exploits the extension to one higher dimension. The second method is the integral formulation and deals with singular non-integrable kernels. The third method is a discretization of the Dunford-Taylor formula. We discuss pros and cons of each method, error estimates, and document their performance with a few numerical experiments.", "revisions": [ { "version": "v1", "updated": "2017-07-05T20:10:21.000Z" } ], "analyses": { "keywords": [ "fractional diffusion", "numerical methods", "error estimates", "pde approach", "spectral definition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }