{ "id": "1707.01331", "version": "v1", "published": "2017-07-05T11:39:35.000Z", "updated": "2017-07-05T11:39:35.000Z", "title": "Asymptotics of the order statistics for a process with a regenerative structure", "authors": [ "Natalia Soja-Kukieła" ], "comment": "12 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "In the paper, a regenerative process $\\{X_n:n\\in\\mathbb{N}\\}$ with finite mean cycle length is considered. For~$M_n^{(q)}$ denoting the $q$-th largest value in $\\{X_k : 1\\leqslant k \\leqslant n\\}$, we prove that \\begin{equation*} \\sup_{x\\in\\mathbb{R}} \\left|P\\left(M^{(q)}_n\\leqslant x\\right) - G(x)^n \\sum_{k=0}^{q-1}\\frac{\\left(-\\log G(x)^n\\right)^k}{k!}\\gamma_{q,k}(x)\\right| \\to 0,\\quad \\text{as} \\quad n\\to\\infty, \\end{equation*} for $G$ and $\\gamma_{q,k}$ expressed in terms of maxima over the cycle. The result is illustrated with examples.", "revisions": [ { "version": "v1", "updated": "2017-07-05T11:39:35.000Z" } ], "analyses": { "subjects": [ "60G70", "60K99", "60J05" ], "keywords": [ "order statistics", "regenerative structure", "asymptotics", "finite mean cycle length", "th largest value" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }