{ "id": "1707.01318", "version": "v1", "published": "2017-07-05T11:05:21.000Z", "updated": "2017-07-05T11:05:21.000Z", "title": "Congruences between Hilbert modular forms of weight $2$, and the Iwasawa $λ$-invariants", "authors": [ "Yuichi Hirano" ], "comment": "36 pages", "categories": [ "math.NT" ], "abstract": "The purpose of this paper is to prove the equality between the algebraic Iwasawa $\\lambda$-invariant and the analytic Iwasawa $\\lambda$-invariant for a Hilbert cusp form of parallel weight $2$ at an ordinary prime $p$ when the associated residual Galois representation is reducible. This is a generalization of a result of R. Greenberg and V. Vatsal.", "revisions": [ { "version": "v1", "updated": "2017-07-05T11:05:21.000Z" } ], "analyses": { "subjects": [ "11R23", "11F41" ], "keywords": [ "hilbert modular forms", "congruences", "associated residual galois representation", "hilbert cusp form", "analytic iwasawa" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }