{ "id": "1707.01151", "version": "v1", "published": "2017-07-04T20:51:57.000Z", "updated": "2017-07-04T20:51:57.000Z", "title": "Asymptotic periodicity in outer billiards with contraction", "authors": [ "José Pedro Gaivão" ], "comment": "17 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "We show that for almost every $(P,\\lambda)$ where $P$ is a convex polygon and $\\lambda\\in(0,1)$, the corresponding outer billiard about $P$ with contraction $\\lambda$ is asymptotically periodic, i.e., has a finite number of periodic orbits and every orbit is attracted to one of them.", "revisions": [ { "version": "v1", "updated": "2017-07-04T20:51:57.000Z" } ], "analyses": { "subjects": [ "37E99" ], "keywords": [ "asymptotic periodicity", "contraction", "finite number", "periodic orbits" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }