{ "id": "1707.01148", "version": "v1", "published": "2017-07-04T20:40:09.000Z", "updated": "2017-07-04T20:40:09.000Z", "title": "Biquasile Colorings of Oriented Surface-Links", "authors": [ "Jieon Kim", "Sam Nelson" ], "comment": "12 pages", "categories": [ "math.GT", "math.QA" ], "abstract": "We introduce colorings of oriented surface-links by biquasiles using marked graph diagrams. We use these colorings to define counting invariants and Boltzmann enhancements of the biquasile counting invariants for oriented surface-links. We provide examples to show that the invariants can distinguish both closed surface-links and cobordisms and are sensitive to orientation.", "revisions": [ { "version": "v1", "updated": "2017-07-04T20:40:09.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "oriented surface-links", "biquasile colorings", "define counting invariants", "boltzmann enhancements", "marked graph diagrams" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }