{ "id": "1707.00288", "version": "v1", "published": "2017-07-02T13:40:17.000Z", "updated": "2017-07-02T13:40:17.000Z", "title": "Area of the Fatou sets of a family of entire functions", "authors": [ "Song Zhang", "Fei Yang" ], "comment": "15 pages, 1 figure", "categories": [ "math.DS" ], "abstract": "Let $f$ be an entire function with the form $f(z)=P(e^z)/e^z$, where $P$ is a polynomial with degree at least $2$ and $P(0)\\neq 0$. We prove that the area of the Fatou set of $f$ in a horizontal strip of width $2\\pi$ is finite. In particular, the corresponding result can be applied to the sine family $\\alpha\\sin(z+\\beta)$, where $\\alpha\\neq 0$ and $\\beta\\in\\mathbb{C}$.", "revisions": [ { "version": "v1", "updated": "2017-07-02T13:40:17.000Z" } ], "analyses": { "keywords": [ "fatou set", "entire function", "horizontal strip", "polynomial" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }