{ "id": "1706.09851", "version": "v1", "published": "2017-06-29T17:00:18.000Z", "updated": "2017-06-29T17:00:18.000Z", "title": "Pinned distance problem, slicing measures and local smoothing estimates", "authors": [ "Alex Iosevich", "Bochen Liu" ], "categories": [ "math.CA", "math.MG" ], "abstract": "We improve the Peres-Schlag result on pinned distances in sets of a given Hausdorff dimension. In particular, for Euclidean distances, with $$\\Delta^y(E) = \\{|x-y|:x\\in E\\},$$ we prove that for any $E, F\\subset{\\Bbb R}^d$, there exists a probability measure $\\mu_F$ on $F$ such that for $\\mu_F$-a.e. $y\\in F$, (1) $\\dim_{{\\mathcal H}}(\\Delta^y(E))\\geq\\beta$ if $\\dim_{{\\mathcal H}}(E) + \\frac{d-1}{d+1}\\dim_{{\\mathcal H}}(F) > d - 1 + \\beta$; (2) $\\Delta^y(E)$ has positive Lebesgue measure if $\\dim_{{\\mathcal H}}(E)+\\frac{d-1}{d+1}\\dim_{{\\mathcal H}}(F) > d$; (3) $\\Delta^y(E)$ has non-empty interior if $\\dim_{{\\mathcal H}}(E)+\\frac{d-1}{d+1}\\dim_{{\\mathcal H}}(F) > d+1$. We also show that in the case when $\\dim_{{\\mathcal H}}(E)+\\frac{d-1}{d+1}\\dim_{{\\mathcal H}}(F)>d$, for $\\mu_F$-a.e. $y\\in F$, $$ \\left\\{t\\in{\\Bbb R} : \\dim_{{\\mathcal H}}(\\{x\\in E:|x-y|=t\\}) \\geq \\dim_{{\\mathcal H}}(E)+\\frac{d+1}{d-1}\\dim_{{\\mathcal H}}(F)-d \\right\\} $$ has positive Lebesgue measure. This describes dimensions of slicing subsets of $E$, sliced by spheres centered at $y$. In our proof, local smoothing estimates of Fourier integral operators (FIO) plays a crucial role. In turn, we obtain results on sharpness of local smoothing estimates by constructing geometric counterexamples.", "revisions": [ { "version": "v1", "updated": "2017-06-29T17:00:18.000Z" } ], "analyses": { "subjects": [ "28A75", "35S30" ], "keywords": [ "local smoothing estimates", "pinned distance problem", "slicing measures", "positive lebesgue measure", "fourier integral operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }