{ "id": "1706.09178", "version": "v1", "published": "2017-06-28T09:12:39.000Z", "updated": "2017-06-28T09:12:39.000Z", "title": "Additive structure of totally positive quadratic integers", "authors": [ "Tomáš Hejda", "Vítězslav Kala" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Let $K=\\mathbb Q(\\sqrt D)$ be a real quadratic field. We obtain a presentation of the additive semigroup $\\mathcal O_K^+(+)$ of totally positive integers in $K$; its generators (indecomposable integers) and relations can be nicely described in terms of the periodic continued fraction for $\\sqrt D$. We also characterize all uniquely decomposable integers in $K$ and estimate their norms. Using these results, we prove that the semigroup $\\mathcal O_K^+(+)$ completely determines the real quadratic field $K$.", "revisions": [ { "version": "v1", "updated": "2017-06-28T09:12:39.000Z" } ], "analyses": { "subjects": [ "11R11", "11A55", "20M05" ], "keywords": [ "totally positive quadratic integers", "additive structure", "real quadratic field", "periodic continued fraction", "presentation" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }