{ "id": "1706.09103", "version": "v1", "published": "2017-06-28T02:14:19.000Z", "updated": "2017-06-28T02:14:19.000Z", "title": "Asymptotics for polynomials orthogonal in an indefinite metric", "authors": [ "Maxim Derevyagin", "Brian Simanek" ], "comment": "16 pages", "categories": [ "math.CA", "math.CV", "math.SP" ], "abstract": "We continue studying polynomials generated by the Szeg\\H{o} recursion when a finite number of Verblunsky coefficients lie outside the closed unit disk. We prove some asymptotic results for the corresponding orthogonal polynomials and then translate them to the real line to obtain the Szeg\\H{o} asymptotics for the resulting polynomials. The latter polynomials give rise to a non-symmetric tridiagonal matrix but it is a finite-rank perturbation of a symmetric Jacobi matrix.", "revisions": [ { "version": "v1", "updated": "2017-06-28T02:14:19.000Z" } ], "analyses": { "keywords": [ "polynomials orthogonal", "indefinite metric", "asymptotic", "verblunsky coefficients lie outside", "symmetric jacobi matrix" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }