{ "id": "1706.09050", "version": "v1", "published": "2017-06-27T21:16:05.000Z", "updated": "2017-06-27T21:16:05.000Z", "title": "Feynman-Kac representation for the parabolic Anderson model driven by fractional noise", "authors": [ "Kamran Kalbasi", "Thomas S. Mountford" ], "journal": "Journal of Functional Analysis, Volume 269, Issue 5, 2015, Pages 1234-1263", "doi": "10.1016/j.jfa.2015.06.003", "categories": [ "math.PR", "math.AP" ], "abstract": "We consider the parabolic Anderson model driven by fractional noise: $$ \\frac{\\partial}{\\partial t}u(t,x)= \\kappa \\boldsymbol{\\Delta} u(t,x)+ u(t,x)\\frac{\\partial}{\\partial t}W(t,x) \\qquad x\\in\\mathbb{Z}^d\\;,\\; t\\geq 0\\,, $$ where $\\kappa>0$ is a diffusion constant, $\\boldsymbol{\\Delta}$ is the discrete Laplacian defined by $\\boldsymbol{\\Delta} f(x)= \\frac{1}{2d}\\sum_{|y-x|=1}\\bigl(f(y)-f(x)\\bigr)$, and $\\{W(t,x)\\;;\\;t\\geq0\\}_{x \\in \\mathbb{Z}^d}$ is a family of independent fractional Brownian motions with Hurst parameter $H\\in(0,1)$, indexed by $\\mathbb{Z}^d$. We make sense of this equation via a Stratonovich integration obtained by approximating the fractional Brownian motions with a family of Gaussian processes possessing absolutely continuous sample paths. We prove that the Feynman-Kac representation \\begin{equation} u(t,x)=\\mathbb{E}^x\\Bigl[u_o(X(t))\\exp \\int_0^t W\\bigl(\\mathrm{d}s, X(t-s)\\bigr)\\Bigr]\\,, \\end{equation} is a mild solution to this problem. Here $u_o(y)$ is the initial value at site $y\\in\\mathbb{Z}^d$, $\\{X(t)\\;;\\;t\\geq0\\}$ is a simple random walk with jump rate $\\kappa$, started at $x \\in \\mathbb{Z}^d$ and independent of the family $\\{W(t,x)\\;;\\;t\\geq0\\}_{x\\in\\mathbb{Z}^d}$ and $\\mathbb{E}^x$ is expectation with respect to this random walk. We give a unified argument that works for any Hurst parameter $H\\in (0,1)$.", "revisions": [ { "version": "v1", "updated": "2017-06-27T21:16:05.000Z" } ], "analyses": { "subjects": [ "60H15", "60H07", "58J35" ], "keywords": [ "parabolic anderson model driven", "feynman-kac representation", "fractional noise", "fractional brownian motions", "absolutely continuous sample paths" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }