{ "id": "1706.09012", "version": "v1", "published": "2017-06-27T18:59:35.000Z", "updated": "2017-06-27T18:59:35.000Z", "title": "Spectral uniqueness of the bi-invariant metric on symplectic groups", "authors": [ "Emilio A. Lauret" ], "categories": [ "math.DG", "math.SP" ], "abstract": "In this short note, we prove that a bi-invariant Riemannian metric on $\\mathrm{Sp}(n)$ is uniquely determined by the spectrum of its Laplace operator within the class of left-invariant metrics on $\\mathrm{Sp}(n)$, for any $n\\geq5$ or $n=3$. In other words, on any of these compact simple Lie groups, every left-invariant metric which is not right-invariant cannot be isospectral to a bi-invariant metric. The proof uses a very strong spectral obstruction proved by Gordon, Schueth and Sutton.", "revisions": [ { "version": "v1", "updated": "2017-06-27T18:59:35.000Z" } ], "analyses": { "subjects": [ "58J53", "53C30", "53C35" ], "keywords": [ "bi-invariant metric", "spectral uniqueness", "symplectic groups", "compact simple lie groups", "left-invariant metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }