{ "id": "1706.08342", "version": "v1", "published": "2017-06-26T12:39:59.000Z", "updated": "2017-06-26T12:39:59.000Z", "title": "Monotonicity of functionals of random polytopes", "authors": [ "Mareen Beermann", "Matthias Reitzner" ], "categories": [ "math.PR" ], "abstract": "The convex hull $P_{n}$ of a Gaussian sample $X_{1},...,X_{n}$ in $R^{d}$ is a Gaussian polytope. We prove that the expected number of facets $E f_{d-1} (P_n)$ is monotonically increasing in $n$. Furthermore we prove this for random polytopes generated by uniformly distributed points in a $d$-dimensional ball.", "revisions": [ { "version": "v1", "updated": "2017-06-26T12:39:59.000Z" } ], "analyses": { "subjects": [ "60D05" ], "keywords": [ "random polytopes", "monotonicity", "functionals", "convex hull", "gaussian polytope" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }