{ "id": "1706.08118", "version": "v1", "published": "2017-06-25T15:10:10.000Z", "updated": "2017-06-25T15:10:10.000Z", "title": "Large sets avoiding linear patterns", "authors": [ "Alexia Yavicoli" ], "comment": "9 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We prove that for any dimension function $h$ with $h \\prec x^d$ and for any countable set of linear patterns, there exists a compact set $E$ with $\\mathcal{H}^h(E)>0$ avoiding all the given patterns. We also give several applications and recover results of Keleti, Maga, and Mathe.", "revisions": [ { "version": "v1", "updated": "2017-06-25T15:10:10.000Z" } ], "analyses": { "subjects": [ "28A78" ], "keywords": [ "large sets avoiding linear patterns", "compact set", "dimension function", "countable set", "applications" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }