{ "id": "1706.08039", "version": "v1", "published": "2017-06-25T05:52:13.000Z", "updated": "2017-06-25T05:52:13.000Z", "title": "Fractional Calculus and certain integrals of Generalized multiindex Bessel function", "authors": [ "K. S. Nisar", "S. D. Purohit", "R K. Parmar" ], "categories": [ "math.CA" ], "abstract": "We aim to introduce the generalized multiindex Bessel function $J_{\\left( \\beta _{j}\\right) _{m},\\kappa ,b}^{\\left( \\alpha _{j}\\right)_{m},\\gamma ,c}\\left[ z\\right] $ and to present some formulas of the Riemann-Liouville fractional integration and differentiation operators. Further, we also derive certain integral formulas involving the newly defined generalized multiindex Bessel function $J_{\\left( \\beta _{j}\\right) _{m},\\kappa ,b}^{\\left( \\alpha _{j}\\right)_{m},\\gamma ,c}\\left[ z\\right] $. We prove that such integrals are expressed in terms of the Fox-Wright function $_{p}\\Psi_{q}(z)$. The results presented here are of general in nature and easily reducible to new and known results.", "revisions": [ { "version": "v1", "updated": "2017-06-25T05:52:13.000Z" } ], "analyses": { "subjects": [ "33C20", "33B15" ], "keywords": [ "fractional calculus", "riemann-liouville fractional integration", "defined generalized multiindex bessel function", "fox-wright function", "differentiation operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }