{ "id": "1706.07713", "version": "v1", "published": "2017-06-23T14:02:59.000Z", "updated": "2017-06-23T14:02:59.000Z", "title": "A complete characterization of Birkhoff-James orthogonality of bounded linear operators", "authors": [ "Debmalya Sain", "Kallol Paul", "Arpita Mal" ], "categories": [ "math.FA" ], "abstract": "In this paper, we study Birkhoff-James orthogonality of bounded linear operators and give a complete characterization of Birkhoff-James orthogonality of bounded linear operators on infinite dimensional real normed linear spaces. As an application of the results obtained, we prove a simple but useful characterization of Birkhoff-James orthogonality of bounded linear functionals defined on a real normed linear space, provided the dual space is strictly convex. We also provide separate necessary and sufficient conditions for smoothness of bounded linear operators on infinite dimensional normed linear spaces.", "revisions": [ { "version": "v1", "updated": "2017-06-23T14:02:59.000Z" } ], "analyses": { "subjects": [ "46B20", "47L05" ], "keywords": [ "bounded linear operators", "birkhoff-james orthogonality", "complete characterization", "infinite dimensional normed linear spaces", "infinite dimensional real normed linear" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }