{ "id": "1706.07574", "version": "v1", "published": "2017-06-23T06:37:11.000Z", "updated": "2017-06-23T06:37:11.000Z", "title": "Elliptic quantum groups and Baxter relations", "authors": [ "Huafeng Zhang" ], "comment": "35 pages", "categories": [ "math-ph", "math.MP", "math.QA", "math.RT" ], "abstract": "We introduce a category O of modules over the elliptic quantum group of sl_N with well-behaved q-character theory. We construct asymptotic modules as analytic continuation of a family of finite-dimensional modules, the Kirillov--Reshetikhin modules. In the Grothendieck ring of this category we prove two types of identities: generalized Baxter relations in the spirit of Frenkel--Hernandez between finite-dimensional modules and asymptotic modules; three-term Baxter TQ relations of infinite-dimensional modules.", "revisions": [ { "version": "v1", "updated": "2017-06-23T06:37:11.000Z" } ], "analyses": { "keywords": [ "elliptic quantum group", "baxter relations", "three-term baxter tq relations", "construct asymptotic modules", "well-behaved q-character theory" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }