{ "id": "1706.07319", "version": "v1", "published": "2017-06-22T13:44:46.000Z", "updated": "2017-06-22T13:44:46.000Z", "title": "Sparser variance for primes in arithmetic progression", "authors": [ "Roger Baker", "Tristan Freiberg" ], "categories": [ "math.NT" ], "abstract": "We obtain an analog of the Montgomery-Hooley asymptotic formula for the variance of the number of primes in arithmetic progressions. In the present paper the moduli are restricted to the sequences of integer parts $[F(n)]$, where $F(t) = t^c$ ($c > 1$, $c \\not\\in \\mathbb{N}$) or $F(t) = \\exp\\big((\\log t)^{\\gamma}\\big)$ ($1 < \\gamma < 3/2$).", "revisions": [ { "version": "v1", "updated": "2017-06-22T13:44:46.000Z" } ], "analyses": { "subjects": [ "11N13", "11P55" ], "keywords": [ "arithmetic progression", "sparser variance", "montgomery-hooley asymptotic formula", "integer parts" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }