{ "id": "1706.07009", "version": "v1", "published": "2017-06-21T16:59:49.000Z", "updated": "2017-06-21T16:59:49.000Z", "title": "An improvement of an inequality of Ochem and Rao concerning odd perfect numbers", "authors": [ "Joshua Zelinsky" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Let $\\Omega(n)$ denote the total number of prime divisors of $n$ (counting multiplicity) and let $\\omega(n)$ denote the number of distinct prime divisors of $n$. Various inequalities have been proved relating $\\omega(N)$ and $\\Omega(N)$ when $N$ is an odd perfect number. We improve on these inequalities. In particular, we show that if $3 \\not| N$, then $\\Omega \\geq \\frac{8}{3}\\omega(N)-\\frac{7}{3}$ and if $3 |N$ then $\\Omega(N) \\geq \\frac{21}{8}\\omega(N)-\\frac{39}{8}.$", "revisions": [ { "version": "v1", "updated": "2017-06-21T16:59:49.000Z" } ], "analyses": { "subjects": [ "11A05", "11A25" ], "keywords": [ "rao concerning odd perfect numbers", "inequality", "improvement", "distinct prime divisors", "total number" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }