{ "id": "1706.06824", "version": "v1", "published": "2017-06-21T11:02:02.000Z", "updated": "2017-06-21T11:02:02.000Z", "title": "Mild solutions to the dynamic programming equation for stochastic optimal control problems", "authors": [ "Viorel Barbu", "Chiara Benazzoli", "Luca Di Persio" ], "categories": [ "math.PR" ], "abstract": "We show via the nonlinear semigroup theory in $L^1(\\mathbb{R})$ that the $1$-D dynamic programming equation associated with a stochastic optimal control problem with multiplicative noise has a unique mild solution $\\varphi\\in C([0,T];W^{1,\\infty}(\\mathbb{R}))$ with $\\varphi_{xx}\\in C([0,T];L^1(\\mathbb{R}))$. The $n$-dimensional case is also investigated.", "revisions": [ { "version": "v1", "updated": "2017-06-21T11:02:02.000Z" } ], "analyses": { "keywords": [ "stochastic optimal control problem", "dynamic programming equation", "nonlinear semigroup theory", "unique mild solution", "dimensional case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }