{ "id": "1706.06618", "version": "v1", "published": "2017-06-20T18:47:27.000Z", "updated": "2017-06-20T18:47:27.000Z", "title": "Supercongruences for Bernoulli numbers of polynomial index", "authors": [ "Julian Rosen" ], "comment": "8 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "We prove a general family of congruences for Bernoulli numbers whose index is a polynomial function of a prime, modulo a power of that prime. Our family generalizes many known results, including the von Staudt--Clausen theorem and Kummer's congruence.", "revisions": [ { "version": "v1", "updated": "2017-06-20T18:47:27.000Z" } ], "analyses": { "subjects": [ "11B68", "11A07" ], "keywords": [ "bernoulli numbers", "polynomial index", "supercongruences", "von staudt-clausen theorem", "polynomial function" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }