{ "id": "1706.06357", "version": "v1", "published": "2017-06-20T10:30:50.000Z", "updated": "2017-06-20T10:30:50.000Z", "title": "Harmonic Approximation of Difference Operators", "authors": [ "Markus Klein", "Elke Rosenberger" ], "comment": "30 pages", "journal": "Journal of Functional Analysis 257 (2009) 3409-3453", "doi": "10.1016/j.jfa.2009.09.004", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "For a general class of difference operators $H_\\varepsilon = T_\\varepsilon + V_\\varepsilon$ on $\\ell^2(\\varepsilon\\mathbb{Z}^d)$, where $V_\\varepsilon$ is a multi-well potential and $\\varepsilon$ is a small parameter, we analyze the asymptotic behavior as $\\varepsilon\\to 0$ of the (low-lying) eigenvalues and eigenfunctions. We show that the first $n$ eigenvalues of $H_\\varepsilon$ converge to the first $n$ eigenvalues of the direct sum of harmonic oscillators on $\\mathbb{R}^d$ located at the several wells. Our proof is microlocal.", "revisions": [ { "version": "v1", "updated": "2017-06-20T10:30:50.000Z" } ], "analyses": { "keywords": [ "difference operators", "harmonic approximation", "eigenvalues", "harmonic oscillators", "general class" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }