{ "id": "1706.06146", "version": "v1", "published": "2017-06-19T19:18:46.000Z", "updated": "2017-06-19T19:18:46.000Z", "title": "A dynamic model for the two-parameter Dirichlet process", "authors": [ "Shui Feng", "Wei Sun" ], "comment": "19 pages", "categories": [ "math.PR" ], "abstract": "Let $\\alpha=1/2$, $\\theta>-1/2$, and $\\nu_0$ be a probability measure on a type space $S$. In this paper, we investigate the stochastic dynamic model for the two-parameter Dirichlet process $\\Pi_{\\alpha,\\theta,\\nu_0}$. If $S=\\mathbb{N}$, we show that the bilinear form \\begin{eqnarray*} \\left\\{ \\begin{array}{l} {\\cal E}(F,G)=\\frac{1}{2}\\int_{{\\cal P}_1(\\mathbb{N})}\\langle \\nabla F(\\mu),\\nabla G(\\mu)\\rangle_{\\mu} \\Pi_{\\alpha,\\theta,\\nu_0}(d\\mu),\\ \\ F,G\\in {\\cal F},\\\\ {\\cal F}=\\{F(\\mu)=f(\\mu(1),\\dots,\\mu(d)):f\\in C^{\\infty}(\\mathbb{R}^d), d\\ge 1\\} \\end{array} \\right. \\end{eqnarray*} is closable on $L^2({\\cal P}_1(\\mathbb{N});\\Pi_{\\alpha,\\theta,\\nu_0})$ and its closure $({\\cal E}, D({\\cal E}))$ is a quasi-regular Dirichlet form. Hence $({\\cal E}, D({\\cal E}))$ is associated with a diffusion process in ${\\cal P}_1(\\mathbb{N})$ which is time-reversible with the stationary distribution $\\Pi_{\\alpha,\\theta,\\nu_0}$. If $S$ is a general locally compact, separable metric space, we discuss properties of the model \\begin{eqnarray*} \\left\\{ \\begin{array}{l} {\\cal E}(F,G)=\\frac{1}{2}\\int_{{\\cal P}_1(S)}\\langle \\nabla F(\\mu),\\nabla G(\\mu)\\rangle_{\\mu} \\Pi_{\\alpha,\\theta,\\nu_0}(d\\mu),\\ \\ F,G\\in {\\cal F},\\\\ {\\cal F}=\\{F(\\mu)=f(\\langle \\phi_1,\\mu\\rangle,\\dots,\\langle \\phi_d,\\mu\\rangle): \\phi_i\\in B_b(S),1\\le i\\le d,f\\in C^{\\infty}(\\mathbb{R}^d),d\\ge 1\\}. \\end{array} \\right. \\end{eqnarray*} In particular, we prove the Mosco convergence of its projection forms.", "revisions": [ { "version": "v1", "updated": "2017-06-19T19:18:46.000Z" } ], "analyses": { "subjects": [ "60G57", "60H30" ], "keywords": [ "two-parameter dirichlet process", "stochastic dynamic model", "quasi-regular dirichlet form", "separable metric space", "type space" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }