{ "id": "1706.06095", "version": "v1", "published": "2017-06-18T21:40:16.000Z", "updated": "2017-06-18T21:40:16.000Z", "title": "Block partitions: an extended view", "authors": [ "I. Bárány", "E. Csóka", "Gy. Károlyi", "G. Tóth" ], "categories": [ "math.CO" ], "abstract": "Given a sequence $S=(s_1,\\dots,s_m) \\in [0, 1]^m$, a block $B$ of $S$ is a subsequence $B=(s_i,s_{i+1},\\dots,s_j)$. The size $b$ of a block $B$ is the sum of its elements. It is proved in [1] that for each positive integer $n$, there is a partition of $S$ into $n$ blocks $B_1, \\dots , B_n$ with $|b_i - b_j| \\le 1$ for every $i, j$. In this paper, we consider a generalization of the problem in higher dimensions.", "revisions": [ { "version": "v1", "updated": "2017-06-18T21:40:16.000Z" } ], "analyses": { "keywords": [ "block partitions", "extended view", "higher dimensions", "generalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }