{ "id": "1706.05979", "version": "v1", "published": "2017-06-19T14:15:52.000Z", "updated": "2017-06-19T14:15:52.000Z", "title": "Stochastic Heat Equations with Values in a Riemannian Manifold", "authors": [ "Michael Rockner", "Bo Wu", "Rongchan Zhu", "Xiangchan Zhu" ], "comment": "short version without proof", "categories": [ "math.PR", "math.AP", "math.DG", "math.FA" ], "abstract": "The main result of this note is the existence of martingale solutions to the stochastic heat equation (SHE) in a Riemannian manifold by using suitable Dirichlet forms on the corresponding path/loop space. Moreover, we present some characterizations of the lower bound of the Ricci curvature by functional inequalities of various associated Dirichlet forms.", "revisions": [ { "version": "v1", "updated": "2017-06-19T14:15:52.000Z" } ], "analyses": { "keywords": [ "stochastic heat equation", "riemannian manifold", "corresponding path/loop space", "martingale solutions", "associated dirichlet forms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }