{ "id": "1706.05821", "version": "v1", "published": "2017-06-19T08:08:38.000Z", "updated": "2017-06-19T08:08:38.000Z", "title": "A remark on the Chow ring of some hyperkähler fourfolds", "authors": [ "Robert Laterveer" ], "comment": "8 pages, to appear in Bulletin of the Belgian Math. Soc., comments welcome !", "categories": [ "math.AG" ], "abstract": "Let $X$ be a hyperk\\\"ahler variety. Voisin has conjectured that the classes of Lagrangian constant cycle subvarieties in the Chow ring of $X$ should lie in a subring injecting into cohomology. We study this conjecture for the Fano variety of lines on a very general cubic fourfold.", "revisions": [ { "version": "v1", "updated": "2017-06-19T08:08:38.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25", "14C30" ], "keywords": [ "chow ring", "hyperkähler fourfolds", "lagrangian constant cycle subvarieties", "general cubic fourfold", "fano variety" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }