{ "id": "1706.05647", "version": "v1", "published": "2017-06-18T13:29:58.000Z", "updated": "2017-06-18T13:29:58.000Z", "title": "Ergodicity of algebraic actions of nilpotent groups", "authors": [ "Siddhartha Bhattacharya" ], "comment": "9 pages, no figures", "categories": [ "math.DS" ], "abstract": "An algebraic $\\Gamma$-action is an action of a countable group $\\Gamma$ on a compact abelian group $X$ by continuous automorphisms of $X$. We prove that any expansive algebraic action of a finitely generated nilpotent group $\\Gamma$ on a connected group $X$ is ergodic. We also show that this result does not hold for actions of polycyclic groups.", "revisions": [ { "version": "v1", "updated": "2017-06-18T13:29:58.000Z" } ], "analyses": { "keywords": [ "ergodicity", "compact abelian group", "polycyclic groups", "finitely generated nilpotent group", "expansive algebraic action" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }