{ "id": "1706.05618", "version": "v1", "published": "2017-06-18T08:18:56.000Z", "updated": "2017-06-18T08:18:56.000Z", "title": "Persistence of invariant tori in integrable Hamiltonian systems under almost periodic perturbations", "authors": [ "Peng Huang", "Xiong Li" ], "comment": "33 pages", "categories": [ "math.DS" ], "abstract": "In this paper we are concerned with the existence of invariant tori in nearly integrable Hamiltonian systems \\begin{equation*} H=h(y)+f(x,y,t), \\end{equation*} where $y\\in D\\subseteq\\mathbb{R}^n$ with $D$ being a closed bounded domain, $x\\in \\mathbb{T}^n$, $f(x,y,t)$ is a real analytic almost periodic function in $t$ with the frequency ${{\\omega}}=(\\cdots,{{\\omega}}_\\lambda,\\cdots)_{\\lambda\\in \\mathbb{Z}}\\in \\mathbb{R}^{\\mathbb{Z}}$. As an application, we will prove the existence of almost periodic solutions and the boundedness of all solutions for the second order differential equations with superquadratic potentials depending almost periodically on time.", "revisions": [ { "version": "v1", "updated": "2017-06-18T08:18:56.000Z" } ], "analyses": { "keywords": [ "integrable hamiltonian systems", "invariant tori", "periodic perturbations", "second order differential equations", "persistence" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }