{ "id": "1706.05260", "version": "v1", "published": "2017-06-15T08:19:08.000Z", "updated": "2017-06-15T08:19:08.000Z", "title": "On the domain of elliptic operators defined in subsets of Wiener spaces", "authors": [ "D. Addona", "G. Cappa", "S. Ferrari" ], "comment": "arXiv admin note: text overlap with arXiv:1609.07337", "categories": [ "math.AP", "math.FA" ], "abstract": "Let $X$ be a separable Banach space endowed with a non-degenerate centered Gaussian measure $\\mu$. The associated Cameron-Martin space is denoted by $H$. Consider two sufficiently regular convex functions $U:X\\rightarrow\\mathbb{R}$ and $G:X\\rightarrow \\mathbb{R}$. We let $\\nu=e^{-U}\\mu$ and $\\Omega=G^{-1}(-\\infty,0]$. In this paper we are interested in the domain of the the self-adjoint operator associated with the quadratic form \\begin{gather} (\\psi,\\varphi)\\mapsto \\int_\\Omega\\langle\\nabla_H\\psi,\\nabla_H\\varphi\\rangle_Hd\\nu\\qquad\\psi,\\varphi\\in W^{1,2}(\\Omega,\\nu).\\qquad\\qquad (\\star) \\end{gather} In particular we obtain a complete characterization of the Ornstein-Uhlenbeck operator on half-spaces, namely if $U\\equiv 0$ and $G$ is an affine function, then the domain of the operator defined via $(\\star)$ is the space \\[\\{u\\in W^{2,2}(\\Omega,\\mu)\\,|\\, \\langle\\nabla_H u(x),\\nabla_H G(x)\\rangle_H=0\\text{ for }\\rho\\text{-a.e. }x\\in G^{-1}(0)\\},\\] where $\\rho$ is the Feyel-de La Pradelle Hausdorff-Gauss surface measure.", "revisions": [ { "version": "v1", "updated": "2017-06-15T08:19:08.000Z" } ], "analyses": { "subjects": [ "28C20", "35J15", "46G12", "47A07", "47A30" ], "keywords": [ "elliptic operators", "wiener spaces", "pradelle hausdorff-gauss surface measure", "sufficiently regular convex functions", "non-degenerate centered gaussian measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }