{ "id": "1706.04903", "version": "v1", "published": "2017-06-15T14:47:30.000Z", "updated": "2017-06-15T14:47:30.000Z", "title": "A remark on Hamilton cycles with few colors", "authors": [ "Igor Balla", "Alexey Pokrovskiy", "Benny Sudakov" ], "categories": [ "math.CO" ], "abstract": "Akbari, Etesami, Mahini, and Mahmoody conjectured that every proper edge colouring of $K_n$ with $n$ colours contains a Hamilton cycle with $\\leq O(\\log n)$ colours. They proved that there is always a Hamilton cycle with $\\leq 8\\sqrt n$ colours. In this note we improve this bound to $O(\\log^3 n)$.", "revisions": [ { "version": "v1", "updated": "2017-06-15T14:47:30.000Z" } ], "analyses": { "subjects": [ "05C45" ], "keywords": [ "hamilton cycle", "colours contains", "proper edge colouring" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }