{ "id": "1706.04497", "version": "v1", "published": "2017-06-14T13:58:07.000Z", "updated": "2017-06-14T13:58:07.000Z", "title": "Upper bounds for numerical radius inequalities involving off-diagonal operator matrices", "authors": [ "Mojtaba Bakherad", "Khalid Shebrawi" ], "categories": [ "math.FA" ], "abstract": "In this paper, we establish some upper bounds for numerical radius inequalities including of $2\\times 2$ operator matrices and their off-diagonal parts. Among other inequalities, it is shown that if $T=\\left[\\begin{array}{cc} 0&X, Y&0 \\end{array}\\right]$, then \\begin{align*} \\omega^{r}(T)\\leq 2^{r-2}\\left\\|f^{2r}(|X|)+g^{2r}(|Y^*|)\\right\\|^\\frac{1}{2}\\left\\|f^{2r}(|Y|)+g^{2r}(|X^*|)\\right\\|^\\frac{1}{2} \\end{align*} and \\begin{align*} \\omega^{r}(T)\\leq 2^{r-2}\\left\\|f^{2r}(|X|)+f^{2r}(|Y^*|)\\right\\|^\\frac{1}{2}\\left\\|g^{2r}(|Y|)+g^{2r}(|X^*|)\\right\\|^\\frac{1}{2}, \\end{align*} where $X, Y$ are bounded linear operators on a Hilbert space ${\\mathscr H}$, $r\\geq 1$ and $f$, $g$ are nonnegative continuous functions on $[0, \\infty)$ satisfying the relation $f(t)g(t)=t\\,(t\\in[0, \\infty))$. Moreover, we present some inequalities involving the generalized Euclidean operator radius of operators $T_{1},\\cdots,T_{n}$.", "revisions": [ { "version": "v1", "updated": "2017-06-14T13:58:07.000Z" } ], "analyses": { "keywords": [ "numerical radius inequalities", "off-diagonal operator matrices", "upper bounds", "generalized euclidean operator radius", "bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }