{ "id": "1706.04174", "version": "v1", "published": "2017-06-13T17:39:19.000Z", "updated": "2017-06-13T17:39:19.000Z", "title": "On the images of the Galois representations attached to certain RAESDC automorphic representations of $\\mbox{GL}_n(\\mathbb{A}_{\\mathbb{Q}})$", "authors": [ "Adrian Zenteno" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "In this paper we prove the existence of infinitely many compatible systems $\\{ \\rho_\\ell \\}_\\ell$ of $n$-dimensional Galois representations associated to regular algebraic, essentially self-dual, cuspidal automorphic representations of $\\mbox{GL}_n(\\mathbb{A}_{\\mathbb{Q}})$ ($n$ even) such that the image of $\\overline{\\rho}_{\\ell}^{proj}$ (the projectivization of the reduction of $\\rho_\\ell$) is an almost simple group for almost all primes $\\ell$. Moreover, applying this result to some low-dimensional cases, we prove that the symplectic groups: $\\mbox{PSp}_n(\\mathbb{F}_{\\ell^s})$ and $\\mbox{PGSp}_n(\\mathbb{F}_{\\ell^s})$, for $6\\leq n \\leq 12$, and the orthogonal groups: $\\mbox{P}\\Omega^+_n(\\mathbb{F}_{\\ell^s})$, $\\mbox{PSO}^+_n(\\mathbb{F}_{\\ell^s})$, $\\mbox{PO}^+_n(\\mathbb{F}_{\\ell^s})$ and $\\mbox{PGO}^+_n(\\mathbb{F}_{\\ell^s})$, occurs as Galois groups over $\\mathbb{Q}$ for infinitely many primes $\\ell$ and infinitely many positive integers $s$.", "revisions": [ { "version": "v1", "updated": "2017-06-13T17:39:19.000Z" } ], "analyses": { "subjects": [ "11F80", "12F12" ], "keywords": [ "raesdc automorphic representations", "dimensional galois representations", "cuspidal automorphic representations", "galois groups", "regular algebraic" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }