{ "id": "1706.04173", "version": "v1", "published": "2017-06-13T17:29:30.000Z", "updated": "2017-06-13T17:29:30.000Z", "title": "The Density of Numbers Represented by Diagonal Forms of Large Degree", "authors": [ "Brandon Hanson", "Asif Zaman" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Let $s \\geq 3$ be a fixed positive integer and $a_1,\\dots,a_s \\in \\mathbb{Z}$ be arbitrary. We show that, on average over $k$, the density of numbers represented by the degree $k$ diagonal form \\[ a_1 x_1^k + \\cdots + a_s x_s^k \\] decays rapidly with respect to $k$.", "revisions": [ { "version": "v1", "updated": "2017-06-13T17:29:30.000Z" } ], "analyses": { "keywords": [ "diagonal form", "large degree", "fixed positive integer" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }