{ "id": "1706.04028", "version": "v1", "published": "2017-06-13T12:38:52.000Z", "updated": "2017-06-13T12:38:52.000Z", "title": "The variance of the Euler totient function", "authors": [ "Tom van Overbeeke" ], "comment": "15 pages, 3 figures", "categories": [ "math.NT" ], "abstract": "In this paper we study the variance of the Euler totient function (normalized to $\\varphi(n)/n$) in the integers $\\mathbb{Z}$ and in the polynomial ring $\\mathbb{F}_q[T]$ over a finite field $\\mathbb{F}_q$. It turns out that in $\\mathbb{Z}$, under some assumptions, the variance of the normalized Euler function becomes constant. This is supported by several numerical simulations. Surprisingly, in $\\mathbb{F}_q[T]$, $q\\rightarrow \\infty$, the analogue does not hold: due to a high amount of cancellation, the variance becomes inversely proportional to the size of the interval.", "revisions": [ { "version": "v1", "updated": "2017-06-13T12:38:52.000Z" } ], "analyses": { "subjects": [ "11T55", "11M38", "11M50", "11N37" ], "keywords": [ "euler totient function", "finite field", "normalized euler function", "polynomial", "assumptions" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }