{ "id": "1706.03987", "version": "v1", "published": "2017-06-13T10:28:16.000Z", "updated": "2017-06-13T10:28:16.000Z", "title": "Minimum supports of eigenfunctions of Johnson graphs", "authors": [ "Konstantin Vorob'ev", "Ivan Mogilnykh", "Alexandr Valyuzhenich" ], "categories": [ "math.CO" ], "abstract": "We study the weights of eigenvectors of the Johnson graphs $J(n,w)$. For any $i \\in \\{1,\\ldots,w\\}$ and sufficiently large $n, n\\geq n(i,w)$ we show that an eigenvector of $J(n,w)$ with the eigenvalue $\\lambda_i=(n-w-i)(w-i)-i$ has at least $2^i(^{n-2i}_{w-i})$ nonzeros and obtain a characterization of eigenvectors that attain the bound.", "revisions": [ { "version": "v1", "updated": "2017-06-13T10:28:16.000Z" } ], "analyses": { "keywords": [ "johnson graphs", "minimum supports", "eigenfunctions", "eigenvector" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }