{ "id": "1706.03889", "version": "v1", "published": "2017-06-13T02:13:01.000Z", "updated": "2017-06-13T02:13:01.000Z", "title": "On the module structure of the center of hyperelliptic Krichever-Novikov algebras", "authors": [ "Ben Cox", "Mee Seong Im" ], "comment": "32 pages, submitted", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "We consider the coordinate ring $R := R_{2}(p)=\\mathbb{C}[t^{\\pm 1}, u : u^2 = t(t-\\alpha_1)\\cdots (t-\\alpha_{2n})] $ of a hyperelliptic curve and let $\\mathfrak{g}\\otimes R$ be the corresponding current Lie algebra where $\\mathfrak g$ is a finite dimensional simple Lie algebra defined over $\\mathbb C$. We give a generator and relations description of the universal central extension of $\\mathfrak{g}\\otimes R$ in terms of certain families of polynomials $P_{k,i}$ and $Q_{k,i}$ and describe how the center of $\\Omega_R/dR$ decomposes into a direct sum of irreducible representations when the automorphism group is $C_{2k}$ or $D_{2k}$.", "revisions": [ { "version": "v1", "updated": "2017-06-13T02:13:01.000Z" } ], "analyses": { "keywords": [ "hyperelliptic krichever-novikov algebras", "module structure", "finite dimensional simple lie algebra", "corresponding current lie algebra", "universal central extension" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }