{ "id": "1706.03433", "version": "v1", "published": "2017-06-12T01:38:36.000Z", "updated": "2017-06-12T01:38:36.000Z", "title": "Arithmetic properties of polynomials", "authors": [ "Yong Zhang", "Zhongyan Shen" ], "comment": "18 pages. Submitted for publication", "categories": [ "math.NT" ], "abstract": "In this paper, first, we prove that the Diophantine system \\[f(z)=f(x)+f(y)=f(u)-f(v)=f(p)f(q)\\] has infinitely many integer solutions for $f(X)=X(X+a)$ with nonzero integers $a\\equiv 0,1,4\\pmod{5}$. Second, we show that the above Diophantine system has an integer parametric solution for $f(X)=X(X+a)$ with nonzero integers $a$, if there are integers $m,n,k$ such that \\[\\begin{cases} \\begin{split} (n^2-m^2) (4mnk(k+a+1) + a(m^2+2mn-n^2)) &\\equiv0\\pmod{(m^2+n^2)^2},\\\\ (m^2+2mn-n^2) ((m^2-2mn-n^2)k(k+a+1) - 2amn) &\\equiv0 \\pmod{(m^2+n^2)^2}, \\end{split} \\end{cases}\\] where $k\\equiv0\\pmod{4}$ when $a$ is even, and $k\\equiv2\\pmod{4}$ when $a$ is odd. Third, we get that the Diophantine system \\[f(z)=f(x)+f(y)=f(u)-f(v)=f(p)f(q)=\\frac{f(r)}{f(s)}\\] has a five-parameter rational solution for $f(X)=X(X+a)$ with nonzero rational number $a$ and infinitely many nontrivial rational parametric solutions for $f(X)=X(X+a)(X+b)$ with nonzero integers $a,b$ and $a\\neq b$. At last, we raise some related questions.", "revisions": [ { "version": "v1", "updated": "2017-06-12T01:38:36.000Z" } ], "analyses": { "subjects": [ "11D25", "11D72", "11G05" ], "keywords": [ "arithmetic properties", "diophantine system", "nonzero integers", "polynomials", "nontrivial rational parametric solutions" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }