{ "id": "1706.03185", "version": "v1", "published": "2017-06-10T05:58:45.000Z", "updated": "2017-06-10T05:58:45.000Z", "title": "A note on the Diophantine equations $x^{2}\\pm5^α\\cdot p^{n}=y^{n}$", "authors": [ "Gökhan Soydan" ], "comment": "8 pages, accepted for publication in Commun. Fac. Sci. Univ. Ank. Series A1: Math. and Stat", "categories": [ "math.NT" ], "abstract": "Suppose that $x$ is odd, $n\\geq7$ and $p\\notin\\{2,5\\}$ are primes. In this paper, we prove that the Diophantine equations $x^{2}\\pm5^{\\alpha}p^{n}=y^{n}$ have no solutions in positive integers $\\alpha,x,y$ with $gcd(x,y)=1$.", "revisions": [ { "version": "v1", "updated": "2017-06-10T05:58:45.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "diophantine equations", "positive integers" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }