{ "id": "1706.03132", "version": "v1", "published": "2017-06-09T21:31:49.000Z", "updated": "2017-06-09T21:31:49.000Z", "title": "A characterization of $Q$-polynomial distance-regular graphs using the intersection numbers", "authors": [ "Supalak Sumalroj" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "We consider a primitive distance-regular graph $\\Gamma$ with diameter at least $3$. We use the intersection numbers of $\\Gamma$ to find a positive semidefinite matrix $G$ with integer entries. We show that $G$ has determinant zero if and only if $\\Gamma$ is $Q$-polynomial.", "revisions": [ { "version": "v1", "updated": "2017-06-09T21:31:49.000Z" } ], "analyses": { "subjects": [ "05E30" ], "keywords": [ "polynomial distance-regular graphs", "intersection numbers", "characterization", "determinant zero", "positive semidefinite matrix" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }