{ "id": "1706.03034", "version": "v1", "published": "2017-06-09T16:49:33.000Z", "updated": "2017-06-09T16:49:33.000Z", "title": "Remarks on minimizers for $(p,q)$-Laplace equations with two parameters", "authors": [ "Vladimir Bobkov", "Mieko Tanaka" ], "comment": "33 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the $(p,q)$-Laplace equation $-\\Delta_p u -\\Delta_q u = \\alpha |u|^{p-2}u + \\beta |u|^{q-2}u$ in a bounded domain $\\Omega \\subset \\mathbb{R}^N$ under zero Dirichlet boundary condition, where $p > q > 1$ and $\\alpha, \\beta \\in \\mathbb{R}$. A curve on the $(\\alpha,\\beta)$-plane which allocates a set of the existence of ground states and the multiplicity of positive solutions is constructed. Additionally, we show that eigenfunctions of the $p$- and $q$-Laplacians under zero Dirichlet boundary condition are linearly independent.", "revisions": [ { "version": "v1", "updated": "2017-06-09T16:49:33.000Z" } ], "analyses": { "subjects": [ "35J62", "35J20", "35P30" ], "keywords": [ "laplace equation", "zero dirichlet boundary condition", "parameters", "ground states", "corresponding energy levels" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }