{ "id": "1706.03020", "version": "v1", "published": "2017-06-09T16:22:36.000Z", "updated": "2017-06-09T16:22:36.000Z", "title": "Modular Forms and $k$-colored Generalized Frobenius Partitions", "authors": [ "Heng Huat Chan", "Liuquan Wang", "Yifan Yang" ], "comment": "45 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $k$ and $n$ be positive integers. Let $c\\phi_{k}(n)$ denote the number of $k$-colored generalized Frobenius partitions of $n$ and $\\mathrm{C}\\Phi_k(q)$ be the generating function of $c\\phi_{k}(n)$. In this article, we study $\\mathrm{C}\\Phi_k(q)$ using the theory of modular forms and discover new surprising properties of $\\mathrm{C}\\Phi_k(q)$.", "revisions": [ { "version": "v1", "updated": "2017-06-09T16:22:36.000Z" } ], "analyses": { "subjects": [ "05A17", "11F11", "11P83", "11F03", "11F33" ], "keywords": [ "colored generalized frobenius partitions", "modular forms", "generating function", "surprising properties", "positive integers" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }