{ "id": "1706.02351", "version": "v1", "published": "2017-05-23T03:47:16.000Z", "updated": "2017-05-23T03:47:16.000Z", "title": "Recognizing difference quotients of real functions", "authors": [ "Trevor Richards", "Jimmy Yau" ], "categories": [ "math.CA" ], "abstract": "For a real function $f:[0,1]\\to\\mathbb{R}$, the difference quotient of $f$ is the function of two real variables $\\operatorname{DQ}_f(a,b)=\\dfrac{f(b)-f(a)}{b-a}$, which we view as defined on the triangle $\\mathcal{T}=\\{(a,b):0\\leq a