{ "id": "1706.02190", "version": "v1", "published": "2017-06-07T13:54:45.000Z", "updated": "2017-06-07T13:54:45.000Z", "title": "The $k$-property and countable tightness of free topological vector spaces", "authors": [ "Fucai Lin" ], "comment": "7", "categories": [ "math.GN", "math.FA" ], "abstract": "The free topological vector space $V(X)$ over a Tychonoff space $X$ is a pair consisting of a topological vector space $V(X)$ and a continuous map $i=i_{X}: X\\rightarrow V(X)$ such that every continuous mapping $f$ from $X$ to a topological vector space $E$ gives rise to a unique continuous linear operator $\\overline{f}: V(X)\\rightarrow E$ with $f=\\overline{f}\\circ i$. In this paper the $k$-property and countable tightness of free topological vector space $V(X)$ over a metrizable space $X$ are studied. For a metrizable space $X$, it is proved that the free topological vector space $V(X)$ is a $k$-space if and only if $X$ is a $k_{\\omega}$-space, and the tightness of $V(X)$ is countable if and only $X$ is separable.", "revisions": [ { "version": "v1", "updated": "2017-06-07T13:54:45.000Z" } ], "analyses": { "subjects": [ "22A05", "46A05", "54A25", "54D50" ], "keywords": [ "free topological vector space", "countable tightness", "unique continuous linear operator", "metrizable space", "continuous map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }