{ "id": "1706.02022", "version": "v1", "published": "2017-06-07T01:58:31.000Z", "updated": "2017-06-07T01:58:31.000Z", "title": "Global existence to a $3D$ chemotaxis-Navier-stokes system with nonlinear diffusion and rotation", "authors": [ "Jiashan Zheng", "Yanyan Li", "Xinhua Zou", "Dongfang Zhang", "Weifang Yan" ], "categories": [ "math.AP" ], "abstract": "This paper is concerned with the following quasilinear chemotaxis--Navier--Stokes system with nonlinear diffusion and rotation $$ \\left\\{ \\begin{array}{l} n_t+u\\cdot\\nabla n=\\Delta n^m-\\nabla\\cdot(nS(x,n,c)\\cdot\\nabla c),\\quad x\\in \\Omega, t>0, c_t+u\\cdot\\nabla c=\\Delta c-nc,\\quad x\\in \\Omega, t>0,\\\\ u_t+\\kappa(u \\cdot \\nabla)u+\\nabla P=\\Delta u+n\\nabla \\phi ,\\quad x\\in \\Omega, t>0,\\\\ \\nabla\\cdot u=0,\\quad x\\in \\Omega, t>0 \\end{array}\\right.\\eqno(CNF) $$ is considered under the no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ in a three-dimensional convex domain $\\Omega\\subseteq \\mathbb{R}^3$ with smooth boundary, which describes the motion of oxygen-driven bacteria in a fluid. Here % $\\Omega\\subseteq \\mathbb{R}^3$ is a , $\\kappa\\in \\mathbb{R}$ and $S$ denotes the strength of nonlinear fluid convection and a given tensor-valued function, respectively. Assume $m>\\frac{10}{9}$ and $S$ fulfills $|S(x,n,c)| \\leq S_0(c)$ for all $(x,n,c)\\in \\bar{\\Omega} \\times [0, \\infty)\\times[0, \\infty)$ with $S_0(c)$ nondecreasing on $[0,\\infty)$, then for any reasonably regular initial data, the corresponding initial-boundary problem $(CNF)$ admits at least one global weak solution.", "revisions": [ { "version": "v1", "updated": "2017-06-07T01:58:31.000Z" } ], "analyses": { "keywords": [ "nonlinear diffusion", "global existence", "no-flux boundary conditions", "dirichlet boundary condition", "global weak solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }