{ "id": "1706.01654", "version": "v1", "published": "2017-06-06T08:33:08.000Z", "updated": "2017-06-06T08:33:08.000Z", "title": "On the real zeros of random trigonometric polynomials with dependent coefficients", "authors": [ "Jürgen Angst", "Federico Dalmao", "Guillaume Poly" ], "categories": [ "math.PR" ], "abstract": "We consider random trigonometric polynomials of the form \\[ f_n(t):=\\sum_{1\\le k \\le n} a_{k} \\cos(kt) + b_{k} \\sin(kt), \\] whose entries $(a_{k})_{k\\ge 1}$ and $(b_{k})_{k\\ge 1}$ are given by two independent stationary Gaussian processes with the same correlation function $\\rho$. Under mild assumptions on the spectral function $\\psi_\\rho$ associated with $\\rho$, we prove that the expectation of the number $N_n([0,2\\pi])$ of real roots of $f_n$ in the interval $[0,2\\pi]$ satisfies \\[ \\lim_{n \\to +\\infty} \\frac{\\mathbb E\\left [N_n([0,2\\pi])\\right]}{n} = \\frac{2}{\\sqrt{3}}. \\] The latter result not only covers the well-known situation of independent coefficients but allow us to deal with long range correlations. In particular it englobes the case where the random coefficients are given by a fractional Brownian noise with any Hurst parameter.", "revisions": [ { "version": "v1", "updated": "2017-06-06T08:33:08.000Z" } ], "analyses": { "subjects": [ "26C10", "30C15", "42A05", "60F17", "60G55" ], "keywords": [ "random trigonometric polynomials", "real zeros", "dependent coefficients", "independent stationary gaussian processes", "fractional brownian noise" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }