{ "id": "1706.01518", "version": "v1", "published": "2017-06-05T19:56:10.000Z", "updated": "2017-06-05T19:56:10.000Z", "title": "Degeneration of Kahler-Einstein manifolds of negative scalar curvature", "authors": [ "Jian Song" ], "categories": [ "math.DG", "math.AG" ], "abstract": "Let $\\pi: \\mathcal{X}^* \\rightarrow B^*$ be an algebraic family of compact K\\\"ahler manifolds of complex dimension $n$ with negative first Chern class over a punctured disc $B^*\\in \\mathbb{C}$. Let $g_t$ be the unique K\\\"ahler-Einstein metric on $\\mathcal{X}_t= \\pi^{-1}(t)$. We show that as $t\\rightarrow 0$, $(\\mathcal{X}_t, g_t)$ converges in pointed Gromov-Hausdorff topology to a unique finite disjoint union of complete metric length spaces $\\coprod_{\\alpha=1}^\\mathcal{A} (Y_\\alpha, d_\\alpha)$ without loss of volume. Each $(Y_\\alpha, d_\\alpha)$ is a smooth open K\\\"ahler-Einstein manifold of complex dimension n outside its closed singular set of Hausdorff dimension no greater than $2n-4$. Furthermore, $\\coprod_{\\alpha=1}^\\mathcal{A} Y_\\alpha$ is a quasi-projective variety isomorphic to $\\mathcal{X}_0 \\setminus LCS(\\mathcal{X}_0)$, where $\\mathcal{X}_0$ is a projective semi-log canonical model and $LCS(\\mathcal{X}_0)$ is the non-log terminal locus of $\\mathcal{X}_0$. This is the first step of our approach toward compactification of the analytic geometric moduli space of K\\\"ahler-Einstein manifolds of negative scalar curvature.", "revisions": [ { "version": "v1", "updated": "2017-06-05T19:56:10.000Z" } ], "analyses": { "keywords": [ "negative scalar curvature", "kahler-einstein manifolds", "degeneration", "complex dimension", "complete metric length spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }