{ "id": "1706.01391", "version": "v1", "published": "2017-06-05T16:05:42.000Z", "updated": "2017-06-05T16:05:42.000Z", "title": "Reversed Dickson polynomials of the $(k+1)$-th kind over Finite Fields, II", "authors": [ "Neranga Fernando" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime and $q$ a power of $p$. The properties and the permutation behavior of the reversed Dickson polynomials of the $(k+1)$-th kind $D_{n,k}(1,x)$ over finite fields have been an interesting topic as shown in the predecessor of the present paper. In this paper, we explain the permutation behaviour of $D_{n,k}(1,x)$ when $n=p^{l_1}+3$, $n=p^{l_1}+p^{l_2}+p^{l_3}$, and $n=p^{l_1}+p^{l_2}+p^{l_3}+p^{l_4}$, where $l_1, l_2$, $l_3$, and $l_4$ are non-negative integers. A generalization $n=p^{l_1}+p^{l_2}+\\cdots +p^{l_i}$ is also explained. We also present some algebraic and arithmetic properties of the reversed Dickson polynomials of the $(k+1)$-th kind $D_{n,k}(1,x)$.", "revisions": [ { "version": "v1", "updated": "2017-06-05T16:05:42.000Z" } ], "analyses": { "subjects": [ "11T06", "11T55" ], "keywords": [ "reversed dickson polynomials", "th kind", "finite fields", "permutation behaviour", "odd prime" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }